Bigdata and Hadoop10 Popular Open Source Big Data Tools

10 Popular Open Source Big Data Tools

Data has become a powerful tool in today’s society, where it translates into direct knowledge and tons of money. Companies are paying through the nose to get their hands on data so that they can modify their strategies, based on the wants and needs of their customers. But, it doesn’t stop there! Big Data is also important for governments, which helps run countries – such as calculating the census.

Data is often in a state of mess, with bucket loads of information coming through multiple channels. Here’s a simple analogy to understand how big data works. Search a common term on Google, can you see the number of results on the top of the search page? Well, now imagine having that many results thrown at you at the same time, but not in a systematic manner. Well, this is big data. Let’s look at the more formal definition of the term.

What is Big Data?
The term ‘Big Data’ refers to extremely large data sets, structured or unstructured, that are so complex that they need more sophisticated processing systems than the traditional data processing application software.

It can also refer to the process of using predictive analytics, user behavior analytics or other advanced data analysis technology to extract value from a data set. Big Data is often used in businesses or government agencies to find trends and patterns, that can help them strategic decisions or spot a certain pattern or trend among the masses.

Here are some open source tools to help you sort through big data:

1. Apache Hadoop


Hadoop has become synonymous with big data and is currently the most popular distributed data processing software. This powerful system is known for its ease of use and its ability to process extremely large data in both, structured and unstructured formats, as well as replicating chunks of data to nodes and making it available on the local processing machine. Apache has also introduced other technologies that accentuate Hadoop’s capabilities such as Apache Cassandra, Apache Pig, Apache Spark, and even ZooKeeper. You can learn this amazing technology using real-world examples here.

2. Lumify


Lumify is a relatively new open source project to create a Big Data fusion and is a great alternative to Hadoop. It has the ability to rapidly sort through numerous quantities of data in different sizes, sources, and formats. What helps stand out is its web-based interface allows users to explore relationships between the data via 2D and 3D graph visualizations, full-text faceted search, dynamic histograms, interactive geospatial views, and collaborative workspaces shared in real-time. It also works out of the box on Amazon’s AWS environment.

3. Apache Storm


Apache Storm can be used with or without Hadoop and is an open source distributed real-time computation system. It makes it easier to process unbounded streams of data, especially for real-time processing. It is extremely simple and easy to use and can be configured with any programming language that the user is comfortable with. The storm is great for using in cases such as real-time analytics, continuous computation, online machine learning, etc. It is scalable and fast, making it perfect for companies that want fast and efficient results.

4. HPCC Systems Big Data


This is a brilliant platform for manipulating, transforming, querying and data warehousing. A great alternative to Hadoop, HPCC delivers superior performance, agility, and scalability. This technology has been used effectively in production environments longer than Hadoop and offers features such as a built-in distributed file system, scalability thousands of nodes, powerful development IDE, fault-resilient, etc.

5. Apache Samoa


Samoa, an acronym for Scalable Advanced Massive Online Analysis, is a platform for mining Big Data streams, especially for Machine Learning. It contains a programming abstraction for distributed streaming ML algorithms. This platform eliminates the complexity of underlying distributed stream processing engines, making it easier to develop new ML algorithms.

6. Elasticsearch


A reliable and secure open source platform that allows users to take any data from any source, in any format and search, analyze it and visualize it in real time. Elasticsearch has been designed for horizontal scalability, reliability and easy management, all the while combining the speed of search with the power of analytics. It uses a developer-friendly, query language that covers structured, unstructured and time-series data.

7. MongoDB


MongoDB is also a great tool to help store and analyze big data, as well as help make applications. It was originally designed to support humongous databases, with its name MongoDB, actually derived from the word humongous. MongoDB is a no SQL database that is written in C++ with document-oriented storage, full index support, replication, and high availability, etc. You can learn how to get started with MongoDB here.

8. Talend Open Studio for Big Data


This is more of an addition to Hadoop and other NoSQL databases but is a powerful addition none-the-less. This open studio offers multiple products to help you learn everything you can do with Big Data. From integration to cloud management, it can help you simplify the job of processing big data. It also provides graphical tools and wizards to help write native code for Hadoop.

9. RapidMiner


Formerly known as YALE, the RapidMiner tool offers advanced analytics through template-based frameworks. It barely requires users to write any code and is offered as a service, rather than a local software. RapidMiner has quickly risen to the top position as a data mining tool and also offers functionality such as data preprocessing and visualization, predictive analytics and statistical modeling, evaluation, and deployment.

10. R-Programming


R isn’t just software, but also a programming language. Project R is the software that has been designed as a data mining tool, while the R programming language is a high-level statistical language that is used for analysis. An open source language and tool, Project R is written is R language and is widely used among data miners for developing statistical software and data analysis. In addition to data mining, it provides statistical and graphical techniques, including linear and nonlinear modeling, classical statistical tests, time-series analysis, classification, clustering, and others. You can learn about Project R and R Programming Language here absolutely FREE!

Also, if you would like to know more about R as a beginner, you can also try the “R Programming for Beginners” online course. This includes 4 hours of video and 26 lectures cover many important topics and terminologies that are vital for R learning.

Big Data mining and analysis are definitely going to continue to grow in the future, with many companies and agencies spending lots of time and money, for acquiring and analyzing data, making data more powerful. If you have used any of these tools or have any other favorite tools for big data, please let us know in the comments below!



Please enter your comment!
Please enter your name here

Exclusive content

- Advertisement -

Latest article


More article

- Advertisement -Eduonix Blog